After diving deep into the AI Agent ecosystem, here are some insights worth sharing.
1. What Makes Claude Code Powerful: Linux + AI + MCP
Why is Claude Code so capable? Because it stands on the shoulders of the Linux ecosystem.
┌─────────────────────────────────────────┐
│ Claude Code (AI Layer) │
│ Natural Language → Plan → Tools → Verify│
├─────────────────────────────────────────┤
│ MCP (Protocol Layer) │
├─────────────────────────────────────────┤
│ Linux CLI + Web Services │
│ grep/git/docker + GitHub/Slack │
├─────────────────────────────────────────┤
│ Linux/Unix OS │
│ Pipes | Stdio | Filesystem │
└─────────────────────────────────────────┘
Three key elements:
Linux is text-native: LLMs are fundamentally text processors; Linux’s “everything is text” philosophy is a perfect match
Unix pipe philosophy: Small composable tools; Agents can chain them together
MCP extends reach: Connects to web services that Linux CLI can’t touch
2. MCP vs Bash: An Important Clarification
I initially thought Claude Code uses MCP to call all tools, including Linux commands like grep, find, and pip.
Wrong.
Claude Code has two types of tools:
Type
Implementation
Examples
Built-in tools
Native, direct execution
Bash, Read, Write, Glob
MCP extensions
Protocol-based communication
GitHub API, Slack, databases
When Claude Code runs git status, it calls the built-in Bash tool to execute the command directly—no MCP involved.
So what is MCP for?
Scenario
Use Bash
Use MCP
Run grep
✅ Direct execution
❌ Unnecessary
Run Python script
✅ python x.py
❌ Unnecessary
Call GitHub API
❌ CLI is limited
✅ Full API access
Keep DB connection
❌ Reconnect each time
✅ Connection pooling
Core principle: MCP extends Unix philosophy, it doesn’t replace it. If native CLI can solve it, skip MCP.
Deep Dive: Claude Code’s Tool Architecture
From Claude model’s perspective, native tools and MCP tools look the same—both are called via Anthropic’s Tool Use API. The difference is in implementation.
Architecture diagram
Claude model outputs:
{
"type": "tool_use",
"name": "Bash",
"input": {"command": "git status"}
}
Native tools: Always available, no external dependencies
MCP: Server process could crash, timeout
3. Bootstrapping
Need basic tools to install MCP servers
Can’t use MCP to install MCP
Analogy: Kernel Mode vs User Mode
┌─────────────────────────────────────────┐
│ Operating System │
├───────────────────┬─────────────────────┤
│ User Mode │ Kernel Mode │
│ (applications) │ (core functions) │
│ syscall needed │ direct execution │
│ isolated │ fast & reliable │
└───────────────────┴─────────────────────┘
┌─────────────────────────────────────────┐
│ Claude Code │
├───────────────────┬─────────────────────┤
│ MCP Tools │ Native Tools │
│ (extensions) │ (core functions) │
│ protocol needed │ direct execution │
│ isolated │ fast & reliable │
└───────────────────┴─────────────────────┘
Design principle: Core functionality should be fast and reliable; extensions go through a standard interface.
3. Two Evolution Tracks
“Make machines do work for humans” has evolved along two different tracks:
Automation Track (Event-Driven)
Year
Milestone
Characteristics
1970s
Cron
Scheduled tasks, requires scripting
2010
IFTTT
”If This Then That”, accessible to everyone
2014
Shortcuts
Mobile automation
2019
n8n
Open source, self-hosted, complex workflows
2024
Dify, Coze
Workflows + AI nodes
Characteristic: Trigger-driven, runs automatically once set up, no human intervention needed.
AI Assistant Track (Human-Driven)
Year
Milestone
Characteristics
2022
ChatGPT
Conversational AI, Q&A
2024
Claude Code
Task-driven Agent, can execute actions
Characteristic: Human-initiated, you give a task, AI completes it.
Convergence of Two Tracks
The current trend is convergence:
n8n/Dify add AI nodes → Automation becomes smarter
Claude Code can be called by other tools → Agents can integrate into automation workflows
How platforms relate to MCP:
Platform
Type
MCP Support
Claude Code
AI Assistant
Native
Dify
Automation + AI
Supported (v1.6.0+)
n8n
Automation + AI
Compatible
Coze
Automation + AI
No
4. The Real Competition Among Agent Platforms
Every company is building Agent platforms, but after MCP standardization, technical barriers are actually thin.
What is everyone doing?
Layer
Work
Technical Difficulty
Model adaptation
Integrate their own models
Low
Tool wrapping
Package as MCP Tools
Low
Prompt engineering
System prompts, orchestration
Medium
New tools
Develop MCP Servers
Medium
The real moats aren’t technical:
Vendor
Real Moat
ByteDance Coze
Traffic (Feishu, Douyin)
Alibaba Bailian
Enterprise customers (DingTalk, Aliyun)
OpenAI
Model capability
Anthropic
Protocol standard (MCP)
Browser wars analogy:
MCP Protocol ≈ HTTP Protocol
Tools ≈ Websites
Prompts ≈ Rendering engine
After protocol standardization, competition becomes:
├── Who has more "websites" (tools)
├── Who has more users
└── Who "renders" (understands) better
Takeaways:
Don’t chase the “latest” platform—features converge
Open source (Dify/n8n) can replace commercial platforms
Learn one platform, you basically know them all
5. Local LLM: Balancing Privacy and Cost
Consideration
Cloud API
Local Deployment
Privacy
Data sent to third party
Data stays local
Cost
Pay per token
Fixed hardware investment
Latency
Network delay
Local response
Popular options:
Ollama: Quick start, consumer GPU
vLLM: Production environment, high concurrency
llama.cpp: Ultra lightweight, runs on CPU
Hands-on: Build a Fully Offline AI Agent
Local model + MCP = Fully offline AI Agent. Here’s the architecture:
┌─────────────────────────────────────────┐
│ MCPHost │
│ (bridges local LLM with MCP servers) │
├──────────────────┬──────────────────────┤
│ Local LLM │ MCP Servers │
│ (Ollama) │ (local tools) │
└──────────────────┴──────────────────────┘
Run mcphost -m ollama:qwen2.5:7b --config ./mcp-config.json and you have a fully offline AI Agent.
Setup steps
Step 1: Install Ollama + model
curl -fsSL https://ollama.com/install.sh | shollama pull qwen2.5:7b # or llama3.2, mistral, etc.